
~RESEARCH AND DEVELOPMENT TECHNICAL REPORT
! CECOM-TR-84-5

A THEORY OF MILLIMETER WAVE PROPAGATION
IN VEGETATION

GERALD M. WHITMAN

FELIX K. SCHWERING
LI-WEN CHEN (NJIT)

CENTER FOR COMMUNICATION SYSTEMS

JULY 1984

DISTRIEUTION STATEMENT

Approved for public release;
distribution is unlimited.

CECOM

U S ARMY COMMUNICATIONS- ELECTRONICS COMMAND
FORT MONMOUTH, NEW IERSEY 07703

90 01 16 0 72



NOTICES

Disclaimers

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dat ntered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

CECOM- TR- 84- 5

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Technical Report
A THEORY OF MILLIMETER WAVE PROPAGATION June 1981 - May 1982
IN VEGETATION 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(&)

Gerald M. Whitman
Felix K. Schwering
Li-Wen Chen (NJIT)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

New Jersey Institute of Technology (NJIT) AREA WORK UNIT NUMBERS

Newark, NJ lL1 61102 AH 48 NM 11 0
(jointly with CECOM) il_61102_AH_48_NM_ 11_0_

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Cmmucations-Electronics Cammand (CECCv) July 1984
Center for Ccmuuication Systeus 13. NUMBER OF PAGES

ATN: DRSEL-CCM-RM-4, Fort Monmouth, NJ 07703 157
14. MONITORING AGENCY NAME & AODRESS(If different from Controlling Office) 1S. SECURITY CLASS. (of thin report)

Unclassified
1Sa. DECL ASSI FI CATION/ DOWNGRADINGSCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

IS. SUPPLEMENT",RY NOTES

19. KEY WORDS (Continue on reverse eide it necessary and identify by block nuwnber)

Millimeter Waves; Propagation in Vegetation; Random Media;
Transport Theory; Coherent and Incoherent Field Components

20. ABSrRACT Z -emm ei t, f N na e y and fdeoWty by block number)

Millimeter-wave propagation in vegetation (forests) is studied
using transport theory. A plane wave is assumed to enter a forest.
The forest is modelled as a slab or half-space consisting of a
random distribution of particles which scatter energy isotropically
The equation of radiative transfer in such a scattering and absorb-
ing medium is solved by using Chebyshev polynomials as basis
functions for series expansions of the diffuse or incoherent inten-
sity. This choice of basis functions simplified considerably (cont)

SJAM- 1413 E9lnOOF NOV65 ISOSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wn DaM 3.m

Block 20 - Abstract (contd)

the systems of linear equations which had to be solved numerical-
ly. Curves are presented which show the range dependency of both
diffuse intensity and power flux density. Also drawn are figures
depicting the directional spectrum of diffuse intensity.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(fhan Data Entered)



TABLE OF CONTENTS

I. INTRODUCTION 1

II. FORMULATION 2

III. REDUCTION OF THE TRANSPORT EQUATION TO
SYSTEMS OF LINEAR EQUATIONS 6

A. Homogeneous Solution 8

B. Particular Solution 12

C. Total Solution 13

IV. FLUX DENSITY 14

V. NUMERICAL RESULTS 16

VI. CONCLUSIONS 24

VII. REFERENCES 25

VIII. ACKNOWLEDGEMENT 26

iii (page iv is blank)



FIGURES

Page

1. Slab Model of a Forest Illuminated by a 27
Plane Wave.

2. Specific Intensity I (r;Q) Flowing Through 27
Area Element dA1 .

3. Types of Intensities: Reduced Incident, Iri; 28
Diffuse, Id; Forward Diffuse Id; Backward Diffuse Id.

4.a. Forward Diffuse Intensity vs.
Distance for 1/2 Space with 0 = 00, 00 = 00. 29

4.b. Forward Diffuse Intensity vs.
Distance for 1/2 Space with 0 = 0, 0= 30 30

4.c. Forward Diffuse Intensity vs.
Distance for 1/2 Space with = 00, =60. 310

5.a. Backward Diffuse Intensity vs.
Distance for 1/2 Space with 0 = 180 , 0 0 32

5.b. Backward Diffuse Intensity vs.
Distance for 1/2 Space with 0 = 180 , 00 30 . 33

5.c. Backward Diffuse Intensity vs.
Distance for 1/2 Space with 0 = 1800, 0 = 600. 34

6.a. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.25; e0 = 0 . 35

6.b. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.25, 00 = 300. 36

6.c. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.25, 0 = 60 °  37

v



FIGURES

Page

6.d Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, 6 = 0° . 380

6.e Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, 60 = 300. 39

6.f Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, 60 = 600. 40

6.g Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, 6 = 00. 410

6.h Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, 6o = 300. 42

6.i Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, 6o = 600. 43

6.j Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.90, 0 = 00 44

6.k Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.90, 6 = 30- 450

6.1 Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.90, 60 = 600. 46

6.m Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, 60 = 0 47

6.n Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, 60 = 300. 48

6.o Relative Forward Diffuse intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, 0 = 60 . 49o

7.a Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.25, 6 = 00. 500

7.b Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.25, 60 = 300. 51

vi



FIGURES

Page

7.c. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.25, e = 600. 520

7.d. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, e = 0 53

7.e. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, 00 = 300. 54

7.f. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, 0 = 60 . 55

7.g. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, 8 = 0 56

7.h. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, 60 = 30 . 57

7.i. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, e0 = 60 . 58

7.j. Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.90, e0 = 0 59

7.k Relative Forward Diffuse Intensity vs. 0
Scatter Angle for 1/2 Space, W = 0.90, 0 = 30 . 600

7.1 Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.90, e0 = 600. 61

7.m Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, o0 = 0 62

7.n Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, 0 = 300. 630

7.o Relative Forward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, 0 = 600. 640

8.a Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.25, 80 = 0° . 65

vii



FIGURES

Page

8.b. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/'2 Space, W = 0.25, 00 = 300. 66

8.c. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.25, 0 = 60 . 670

8.d. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, 0 = 00. 680

8.e. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, 0 = 300. 690

8.f. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.50, 0 = 60 . 700

8.g. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, o0 = 0 71

8.h. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, 60 = 300. 72

8.i. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.75, 90 = 600. 73

8.j. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.90, 60 = 00 74

8.k. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.90, 0 = 300 750

8.1. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.90, 0 = 600 760

8.m. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, 0 = 00 770

8.n. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, 0 = 300 780

8.0. Relative Backward Diffuse Intensity vs.
Scatter Angle for 1/2 Space, W = 0.95, e0 = 600 79

viii



FIGURES

Page

9.a. Forward Diffuse Intensity vs. Distance
for Slab, 0 = 00, T o = 0.2, 00 = 0 80

9.b. Forward Diffuse Intensity vs. Distance
for Slab, 0 = 00 To = 0.5, 00 = 0°  81

9.c. Forward Diffuse Intensity vs. Distance
for Slab, 0 = 00, To =1.0, 0 = 00 82

9.d. Forward Diffuse Intensity vs. Distance
for Slab, 0 = 00, To  2.0, 00 = 00. 83

9.e. Forward Diffuse Intensity vs. Distance
for Slab, 0 = 00, To  5.0, 00 = 0. 84

10.a. Backward Diffuse Intensity vs. Distance
for Slab, 0 = 00, To = 0.2, 0 = 0°  85

10.b. Backward Diffuse Intensity vs. Distance
for Slab, 0 = 00, To = 0.5, O 0°  86

10.c. Backward Diffuse Intensity vs. Distance
for Slab, 0 = 0° , TO = 1.0, 0o = 00. 87

10.d. Backward Diffuse Intensity vs. Distance
for Slab, 0 = 1800, = 2.0, 0= 00 .  88

10.e. Backward Diffuse Intensity vs. Distance
for Slab, 0 = 1800, To = 5.0, 80 = 00. 89

ll.a. Relative Forward Diffuse Intensity vs.
Scatter Angle for Slab, W = 0.50, To  0.2, 0 = 00 90

ll.b. Relative Forward Diffuse Intensity vs. 0
Scatter Angle for Slab, W = 0.75, To  0.2, 0 = 0 . 91

ll.c. Relative Forward Diffuse Intensity vs. 0
Scatter Angle for Slab, W = 0.90, To 0.2, 00 = 0 . 92

ll.d. Relative Forward Diffuse Intensity vs.
Scatter Angle for Slab, W = 0.50, To = 0.5, 0 = 00. 93

ix



FIGURES

Page

ll.e. Relative Forward Diffuse Intensity vs.
Scatter Angle for Slab, W = 0.75, T = 0.5, 0 = 00. 94

ll.f. Relative Forward Diffuse Intensity vs.
Scatter Angle for Slab, W = 0.50, T = 1.0, 0 = 00. 95

ll.g. Relative Forward Diffuse Intensity vs.
Scatter Angle for Slab, W = 0.75, T = 1.0, 60 = 00. 96

12.a. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, 6 = 00, W = 0.50, To = 0.20. 97

12.b. Relative Backward Diffuse Intensity vs.
0

Scatter Angle for Slab, 6 = 0° , W = 0.75, To= 0.20. 98

12.c. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, 0o = 00, W = 0.90, To = 0.20. 99

12.d. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, e = 00, W = 0.50, T = 0.50 100o 0

12.e. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, 0 = 00, W = 0.75, To = 0.50 101

12.f. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, 0° = 00, W = 0.90, To = 0.50 102

12.g. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, e0 = 0, W = 0.50, To 1.00 103

12.h. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, do = 00, W = 0.75, To 1.00 104

12.i. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, e = 00, W = 0.90, To 1.00 105

12.j. Relative Backward Diffuse Intensity vs.
0

Scatter Angle for Slab, 0. = 0° , W = 0.50, To= 2.00 106

12.k. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, 0 = 00, W = 0.75, To 2.00 107

x



FIGURES

Page

12.1. Relative Backward Diffuse Intensity vs.
Scatter Angle for Slab, 0 = 00, W = 0.90, To = 2.00 108

12.m. Relative Backward Diffuse Intensity vs.
Scatter for Slab, 0 = 00, W = 0.50, To = 5.00 109

12.n. Relative Backward Diffuse Intensity vs.
Scatter for Slab, 00 = 00, W = 0.50, To = 5.00 110

12.o. Relative Backward Diffuse Intensity vs.
Scatter for Slab, 0o = 00, W = 0.75, To = 5.00 i1

12.p. Relative Backward Diffuse Intensity vs.
Scatter for Slab, 60 = 0° , W = 0.75, To = 5.00 112

12.q. Relative Backward Diffuse Intensity vs.
Scatter for Slab, 00 = 00, W = 0.90, To = 5.00 113

12.r. Relative Backward Diffuse Intensity vs.
Scatter for Slab, 00 = 0 , W = 0.90, To = 5.00 114

13.a. Forward Diffuse Flux vs.
Distance for 1/2 Space, S = 1, 80 = 0 . 115o o

13.b. Backward Diffuse Flux vs.
Distance for 1/2 Space, So = 1, 0 0. 116

14.a. Forward Diffuse Flux vs.
Distance for Slab, To = 0.25, So = 1.0, = 00. 117

14.b. Backward Diffuse Flux vs.
Distance for Slab, T = 0.25, S = 1.0, 0 = 00. 118

14.c. Forward Flux vs. Distance for Slab,
T = 0.25,S =1.00= 0. 119o°  0.5 o 1 0 o

15.a. Forward Diffuse Flux vs. Distance for Slab,
T = 1.00, s = 1, 0 = 00. 120

15.b. Backward Diffuse Flux vs. Distance for Slab,
To = 1.00, So = 1, 0o = 00. 121

xi



FIGURES

Page

15.c. Forward Flux vs. Distance for Slab,
T = 1.00, So = 1, 00 = 0. 122

16.a. Forward Diffuse Flux vs. Distance for Slab,
T = 5.00,S =1,0 = 0. 123

16.b. Backward Diffuse Flux vs. gistance for Slab,

To = 5.00, So = 1, 00 = 0 . 124

16.c. Forward Flux vs. Distance for Slab,
T o = 5.00, So = 1, 00 = 00. 125

17.a. Forward Diffuse Flux vs. Distance for Slab,
0

T o = 20.00, S = 1, 0 = 0 126

17.b. Backward Diffuse Flux vs. Dstance for Slab,
T o = 20.00, So = 1, 0° = 0 . 127

17.c. Forward Flux vs. Distance f8 r Slab,
To = 20.00, So = 1, 0 = 0 . 128

18.a. Forward Flux vs. Distance f8 r Slab,
To = 0.25, So = 1, 00 = 45 . 129

18.b. Backward Diffuse Flux vs. Distance for Slab,
*0 = 0.25, So = 1.0, a0 = 45 . 130

19.a. Forward Flux vs. Distance fo6 Slab,
T o = 1.0,s = 1.0, 0 =45 . 131

19.b. Backward Diffuse Flux vs. Distance for Slab,
To = 1.0, So = 1.0, 0° = 45 . 132

20.a. Forward Flux vs. Distance for Slab,
T o = 20.00, So = 1, 00 = 45 ° .  133

20.b. Backward Diffuse Flux -,s. Distance for Slab,

To = 20.00, So = 1, 00 = 45 . 134

xii



FIGURES

Page

21.a. Forward Diffuse F ux vs. Distance,
so = 1.0, 0 = 0 135

21.b. Backward Diffuse glux vs. Distance,
so = 1.0, 0 = 0 . 136

21.c. Backward Diffuse Flux vs. Distance,
1/2 Space, So  1.0, To  20, 0 = 0 .137

21.d. Backward Diffuse Flux vs. Distanc8 ,
Slab, S = 1.0, To = 1.0, 0 = 0-. 138

21.e Backward Diffuse Flux vs. Distange,
Slab, So = 1.0, To = 20, 60 = 0 . 139

21. Forward Flux vs. Distance,
so  1.0, To 20. 140

TABLES

1. Eigenvalues for W = 0.50, N = 15 141

2. Eigenvalues for W = 0.75, N = 15 142

3. Eigenvalues for W = 0.95, N = 15 143

xiii



I. INTRODUCTION

The millimeter wave radios currently under development for use

by US Army personnel may have to transmit information through groves
of trees or be placed within a wooded area for camouflage purposes.
Recent experimental results [VE,SJ] have indicated that such communi-

cation capability is feasible. To support this conclusion this

study was initiated. A theory of millimeter-wave propagation in veg-
etation (forests) using transport theory evolved.

In the millimeter range a forest can be characterized as a
random distribution of particles which absorb and scatter electro-

magnetic energy in all directions. Transport theory accounts for
multiple scattering effects fully but neglects interference phenom-

ena, which is justified by the experimental results. In transport

theory the total field intensity is separated into two parts - the

coherent intensity and the incoherent intensity. The polarization

properties of the coherent component are the same as those of the
incident field, which is taken to be a plane wave impinging upon the

forest; the forest is assumed to be a slab or half-space region.

The incoherent intensity, on the other hand, is described by using
the four Stokes' parameters. The theory, thus, involves a system of
four coupled integro-differential equations for the specific inten-

sity of the incoherent component.

By making reasonable assumption concerning the statistical scat-
tering characteristics of the forest medium, it was found that for
the first of the Stokes' parameters a single, uncoupled equation is

obtained which is identical to the conventional scalar transport

equation. The first Stokes' parameter is the quantity of primary in-
terest since it is, by definition, the total intensity of radiation,

i.e., it represents the sum of the intensities of two orthogonal

polarizations. This being the case, only the scalar transport equa-
tion was needed. The relevant equations are formulated in Section II

for the case of planar geometry and plane wave incidence. These

equations, subject to appropriate boundary conditions, are solved in
Section III. Therein, Chebyshev polynomials are used as basis



functions for series expansions of the dif ife or incoherent inten-

sity. This choice of basis functions reduced two of the three linear

systems of equations which had to be solved to systems of two equa-

tions each. Legendre polynomials have been used in a similar

fashion previously [ZSc1. The unknown expansion coefficients, how-

ever, are related by continued fractions, whereas the expansion co-

efficient associated with the Chebyshev polynomials are related more

simply (see Equations (25) and (40)). In Section IV power flux den-

sity is defined in terms of intensity and is shown to reduce to trun-

cated series expansions. Numerical results for intensity and flux

are presented in Section V.

II. FORMULATION

A forest is modeled as a slab region (Fig. 1) confined within

infinite planes z = 0 and z = d. Its vegetation is assumed to con-

sist of a random distribution of particles which scatter and absorb

the incident radiation. The vegetation medium is assumed to be

statistically homogeneous and to be characterized by absorption ( a

and scatter (os) cross sections per unit volume whose dimensions are
-i

meters . Furthermore, we assume that the forest medium has an iso-

tropic scatter characteristic, i.e., the average scatter current will

radiate an equal amount of power into each spatial direction. A uni-

form plane wave is assumed to enter the forest from the direction S00
defined by angles 0 and o of a spherical coordinate system (Fig. 1).

The magnitude of the incident Poynting vector or power flux density

is given as So in watts per meters squared and frequency is specified

by v0 in Hertz.

As energy enters the forest it is multiply scattered in all

directions. To describe this phenomena we use the transport equa-

tion (also called the equation of radiative transfer). The transport

equation is essentially a statement of conservation of energy and has

as its dependent variable the quantity called spectral specific in-

tensity I (r;Q7). It is written in this manner to indicate that it

is both a function of position r = (x,y,z) and of direction as rep-
A

resented by the unit vector 0; the subscript v denotes its spectral

nature. To define spectral specific intensity consider an element

2



of area dA (Fig. 2) whose orientation is defined by the unit normal

vector fi. Assume that radiant power, i.e., energy per unit time dP

flows in the direction specified by 9 through the projected element

of area dA1 = dA cos 0. The spectral specific intensity at the point

r in the direction Q is then defined by the relationship I (r;Q) =

dP/dA1 dvdR, i.e., to be the power per unit area in watts per meters

squared, per frequency interval dv in Hertz and per solid angle d2 inA

steradians which flows in the direction Q normal to the projected

element of area dAI.

Since the planar geometry and incident plane wave problem de-

piqted in Fig. 1 involvesamedium (the forest) which scatters radi-

ation isotropically, the spectral specific intensity depends only on

the coordinate z and the directions 6 and 4 . Since the medium is

linear the scatter field has the same frequency as the incident

radiation. Hence1

I (r; Q) = I (z;8,0)6(v-vo), ()

and the transport equation becomes [OZ, CZ, IS1, Ch]

s I(z; 6',') sin 8' dOI do', O<z<d, (2a)Cos e - + GtI f

where

at = Ga + as (2b)

is the total cross-section or extinction cross-section per unit volume.

Introducing the normalized quantities

T = atz, p = cos a (3a)

and albedo
W = Os/ t  (3b)

allows us to rewrite Equation (2) as

dl ... ! 27T +1
d- + I = 4 - I(T;',,')dj'dP', OQTT o , (4)

0 -1

where To = a td.

iOnly the coherent component of the intensity depends on 0; the inco-
herent component depends on z and 8; see Equations (13) and (14).

3



For convenience we separate the intensity I (T;P, ) into a sum

of two terms (see Fig. 3 and [Isli)

d + Iri. (5)

After substituting Equation (5) into Equation (4) 1d is defined to

satisfy the relationship

d~d _ =2

-d + Id - (I + I .) dp' d ' (6)

and Iri to satisfy the simpler relationship

dIridIJ + 1i 0. (7)
TT ri

Integrating Equation (7) gives

tii(T~,-) = Iri(0;v,4)et/1 (8)

ri Iri 0pfe

Comparing Equation (7) with Equation (4) we see that they would

be identical if the integral term were zero. The integral term

accounts for the multiscatter effects of the medium; without it the

transport equation would simply describe the attenuation of energy as

it flows in a particular direction through the medium due to absorp-

tion (aa) and scattering (a.) by particles along a given ray path.

This effect is described by the solution given in Equation (8).

Hence, we call Iri the reduced incident or coherent intensity and we

designate Id" defined by Equation (6), the diffuse or incoherent in-
tensity since it accounts for multiscatter effects.

To specify boundary conditions required by the slab geometry of

Figure 1 it is convenient to separate the diffuse intensity into two

components, a forward diffuse intensity Id+ and a backward diffuse

intensity Id- where

= 1Id+ 0<6 /2 or OSpSl (9a)

Id 2 <e<n or -Ilj<O
4 (9b)

4



Definition (9) is further clarified by Figure 3 wherein the forward

diffuse constituent Id+ is confined to angles of scatter 8 between

zero and ninety degrees (representing energy transport in the positive

T direction) while the backward diffuse intensity Id- ranges over

ninety to one hundred and eighty degrees (corresponding to energy flow

in the negative T direction). Since these components are generated

within the forest we must have

Id  = 0 at T = 0 (lOa)
and

Id - = 0 at T = Top (lOb)

i.e., diffuse intensity cannot enter the slab from the exterior

regions.

Recall that we have assumed that a plane wave enters the forest

in direction 0 with a power density or Poynting vector magnitude of

S watts per meters squared. The incident intensity in watts per
meters squared per radians squared is then

Io  S0 6(f2 - Qo ) = S o0 6(6-e0 )) = S0 6(lO-% )6O(-0),

sin 8 (11)

where 6(x) represents a Dirac delta function and (80,00) are the di-

rection angles of the incident plane wave. From Equations (5), (9)

and (10) we see that intensity in the forward direction satisfies the

continuity condition

I0 = Id + Iri = Iri at T = 0. (12)

Using Equations (8), (11) and (12) we obtain for the reduced incident

intensity

Iri(;PS) = ioe0T/ = S 0  T)6( 4 _ o)e -/ o. (13)

Substituting Equation (1.3) into Equation (6) and integrating

over * yields transport equations for the diffuse intensity

5



dI± 1  0 WS
d + Id W + +_d 0 /

dT [ Id dp +11 dii'"+ - e o
0 (14)

O<P< 1.

-1 0

The superscript designations (+) identify the appropriate ranges of P

as defined in Equation (9). The two linear integrodifferential

Equations (14) subject to the two boundary conditions, Equation (10),

constitute a complete mathematical statement of the problem which will

be treated in the succeeding sections.

III. REDUCTION OF THE TRANSPORT EQUATION TO SYSTEMS OF LINEAR
EQUATIONS

The Transport equations (14) are solved by representing the

diffuse intensities as truncated series expansions of half-range

Chebyshev polynomials N

I (B B(-) T±(p 0 <:S<1,
d n -1 0 (15a)

with
+

Tn-(p) = T n(2pi 1) (15b)

denoting two Chebyshev polynomials of order n which are complete

orthogonal functions over the p domains (0,1) and (-1,0), respective-

ly. Substitutinq Equation (15) into Equation (14) gives

N dB+(T) + N]T ) Bw(N )+Bn( i

n=0,2,4,... -1 (16)

+ 1 e- 0<P<I
-r -- 0

where use was made of the integral evaluations
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1 ~ ~ ad~ 0 ( n=0,2,4,...I~ ~ ~-)~~ T (x) = dn02'x'J () di = 11 T-i n (17)

0 0

Using the recursive formulas

2(2 Ii)T n(2 I) = T n+l(2p1)+T nl(2p'1) (18)

to replace the terms pTn (2v1-l) in Equation (16) yields

N [± dBj+ dBn B +
E +,+ I*C+ +PE

n +l+Tni ]- + dT [+2 + 4 n J=2W n=0,2,4. " [+ (n-9ln=0 (19)
WS /.

+- e-T/Po , o0 51
Tr -1 0

The orthogonality properties of the half-range Chebyshev poly-

nomials Tn(I) = Tn (2p-+l) provide the means to obtain the following

system of 2n+2 coupled first order differcntial equations for the T-

dependent expansion coefficients B n(T):

dB+ dB+ 1 NS
d 2 +4B + 2W  + n 0 0,n=O, (20a)dT T 0nI-7

n=0,2,4, ...

2 + +2 +4B±=0 n 1, (20b)

dB± dn-I dBn~l dB
d +I + + 2- + 4B n 

- 0, n = 2,3,..., N-1, (20c)

dB,_ 1
1  dBN±

d + 2. -- + 4B 0, n=N (20d)

7



In deducing the above use was made of the fact that T-1 = T1 and

that the truncated series representations Equation (15) require the

coefficients B (r) to be zero for n>N; the latter was used in writingn
Equation (20d).

Orthogonality of the T (2i+l) functions is also used to obtainn
from Equations (10) and (15) the boundary conditions

B (0) =0 (21a)n for alln

Bn o(T) = 0. (21b)

The total solution to Equation (20) subject to boundary con-

ditions Equation (21) consists of homogeneous and particular solutions

B± h (T) and B+-p (i), respectively, i.e.,
n n

B±(T) = B±h(T) + BV(t) n = 0 ,N. (22)
n

The coefficients B± h (T) satisfy the linear system of Equations (20)
nwith SO set equal1 to zero while Bn+ p (T) satisfy the inhomogeneous sys-

tem (S0y0) and have the same functional dependence on T as the forc-

ing function (see Equation (42b)).

A. Homogeneous Solution to Equation (20) (So = 0)

Since the system of equations (20) involves only first order

derivatives in T, homogeneous solutions must depend exponentially on

T. Hence, it may be assumed that, in general, the homogeneous solu-

tion to Equation (20) takes the form

N

B h(T) ~a~ e-/k (23)nn,k k,23

k=O
+

where a- +and s are unknown constants and integer k accounts for all
n, k kpossible solutions. Substituting Equation (23) into Equations (20)

and (21) gives the linear system of equations
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_5 N + _
++ -

+ a +a

at - 2(2sk l)ajk-2Sk W nk ank= 0, n=0 (24a)
k k n=0, 2 ,.. n2-1

2ao, - + a 0, n1 (24b)2 2(2sk+I)al, O, a ~

a;k , k 2

+n=2,.. N-, (24c)
an- -1,Sk+lan,k n+l,k 0 n N(

and

aNL k_2(2s kl)aN =0 n=N. (24d)
Nk ,k

Using the definitions of the Chebyshev polynomials of the

second kind (ASt], the three Equations (24b), (24c) and (24d) yield

expressions for all coefficients in terms of the two coefficients
ai
N,k

+ Cn +
an,k --- UN-n ( 2 skl)a N ,k I n=0,1,2,...,N, (25a)

i, n=0
=12, n*0 (2

Substituting Equation (25) into Equation (24a) and utilizing the re-

lationships

Un+1 (x) = 2x U n(X) - (X )  (26a)

TN+I X) = x UN(X) - UNl(x) (26b)

result in the simpler system of equations

9



A(Sk)ak = (27a)

where
a(S + a2(sk) +~

A(sk) = () ) _ak ) (27b)
a 2(Sk )  a, (sk  N, kk

q=

*

Sk = 2 sk TI, aI(x) = a(x)+skWa(x), a2 (x)=SW(x), (27c)

a(x) = T + (x), (x) - - (x) + 2 Se(x),Se x)=
: jU jN 'n () 7

,~ e "L 1' n_ (27d)
n=2,4, .. .

For non-trivial solutions, det A(Sk) 0; yielding the charac-

teristic equation

T N+l (2s k, )T-N+1 C 1 )+SW [T -(2sk+-) f_-U -s1C1)+2S(2sk-1j
(28)

+ TN (2sk-1) f -U(2V-f)+2S(2sk+1 ) I =0.

This eigenvalue equation is a polynomial in s2 with real coefficients

of order N+1 and provides 2N+2 non-zero, distinct, real eigenvalues

sk = + s Sm>0, m=0,. . . ,N. Physically, real eigenvalues are to

be expected since the associated eigenfunctions are orthogonal and

their sum represents specific intensity or real power. Combining

Equation (28) with one of the equations of Equation (27) yields for

each eigenvalue sk:

a Nk TN+l(2sk1) k = +m, m=0,...,N. (29)

+ TN+1 (2sk +1)aN,k

For k = m, i.e., for positive eigenvalues sk = s m >0 assume that

+

aN,m = a T (2s +1), a = constant. (30)
N n m N+l m in

It then follows using E'quations (29) and (30) that

aN,m =a m T N+ (2s m-1) (31)

10



Combining Equations (30) with (31) gives ror sk=sm>0

a±' =a T 2 1.(32)N,m m TN+l(2 Sm+ I) "

Similarly, for k = -m, i.e., for negative eigenvalues

Sk = S-m =- sm it can be shown that

a± = a T (2s"l) a = constant. (33)
N,-m -m N+1 ' -m

Using Equations (32) and (33) with (25) permits Equation (23) to be

written in terms of positive eigenvalues only:

+h1 N - /s
Bn (T) = nE [ am TN+( 2 Sm±l) UN-n( 2Sm l)e /

m=0 (34)

+(-l Pb T (2s ml) UNn 2 Sm*l)e (s]
mn N+1 m - le mi

In Equation (34) we have used the identity U (-x) = (-1) n U(x) andn

have set bm = (-l)Nam . Hence, with Equation (15) the most general

homogeneous solution to Equation (14) is:

±h N +h
I±h N B- ( T (2-Tl) (35)

d n n
n=o

with Bnh (T) given by Equation (34).n

+h
Simpler expressions for I. are obtained by substituting

Equation (34) into (35), interchanging the order of the summation op-

erations and using a closed form expression to replace the series

which is summed over the integer n. The result is

=amer/sm T (2s ±1)1 m ]~ +
M=O N+l rnS-1

NN
i- m - / i  T,2s 2 ±I) ±1N+Is)-TN+1 (2p¥1).

t be /sm T+2s [ Nm TN+ MI) Sm-lP"

(36)
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B. Particular Solution

To obtain the particular solution we assume that B+P( ) has the

same T- dependence as the forcing term in Equation (20a), namely,

B-P(T) = A± e-T/1o.
n n (37)

Substituting into Equation (20) yields the following linear system

of equations for the coefficients A nn

N A++ A-
Af~ ~ -2( +~0 l Ap-o~( 0, n =0, (38a)

n=O,2,4, ...

2A6 - 2 (2ji +J )A±+ A =0 , n1 , (38b)
0 1

A-2(2iJcl)A ±+ = 0 n =2, ... , N-i, (38c)n-1 n " 1

and

-2(21O 1)A = 0 n = N (38d)

Since Equations (38) are identical in form to Equations (24) except

for the forcing term p 0 S0 W/n they can be solved in like fashion to

yield the system of two equations for the two unknowns AN:

-S 0 'A 1= 0 ) (39)

where

A- =1 U (2 ;1)A± n = 0,1,2,...N , (40)
n -n N_ In N

with n defined in Equation (25b).

The matrix A (Po) is identical to A(s k ) in Equation (27b) but with

k replaced by P and sk by o = 2 p o +1. The solution to Equationsk relae by 00

(39) involves a simple 2 x 2 matrix inversion from which it is found

that

12



+ WS° T N+(2p 0 1)
A o 7r det 4(io ) ' (41)

where det A(V 0) is identical to the left hand side of Equation (28)

but with sk replaced by po.

Combining Equations (37) and (39) with Equation (41) gives the

particular solution

NIf ±P Bn+P(T Tn2l (42a)

n=O

with

B±P) T E .°WS° TN+I( 2h°1l) (42b)
n n 21 det A(p ) N-n o

As was done for the homogeneous solution, the summation over n in

Equation (42a) can be replaced by a closed form expression which re-

sults in

+p e- TVo T (2'Po l) - T (2ul; ) (43)
_P 1\ N+lo0 N+.

d4o -

+
with A given by Equation (41).

C. Total Solution

The complete solution for the diffuse intensity is the super-

position of the homogeneous and particular solutions, given either by

Equations (35) and (42) or (36) and (43). The unknown coefficients

am and bm are determined by application of the boundary conditions in

Equation (21) which we write as

Bnh + BnP = 0 at T = 0 for 0 < < 1 (44a)
n n

and

B h + B- p = 0 at T T for -1 < < 0. (44b)
n n 0

13



Substitution of Equations (34) and (42b) into Equation (44) and

equating coefficients of Tn (2p+l) to zero (these polynomials are

complete for the p-ranges involved) provide the following system of

inhomogeneous linear equations from which to determine the 2N+2 un-

known constants a and b :
m m

N nE~jN+l (2mlu UN-(2 s ml-)+b M(-l) T Nl(2s M-)Nn(sM+)

L TN(ns +1) e N l

m=O
= A N (2 p 1) (4 5a )

A ~~~~~~ given 0yEuto 4)adn=O..N

N T,$ '~U 's TO/
ab al a(2s - n)U a(2 s +1) fsio + b, 1he halJs e olemMNl m N Mm N-m

hF:- 0

(T O -A- al+cefiiet

-7N e_0hioUN-n (w 1  (45b)

with Ai- given by Equation (41) and n = 0, ... ,N.

Although we have formally addressed only the slab problem, the

above analysis applies in a simple fashion to -he half space problem

(T 0 = 00). From Equation (45b) we see that for o  all coefficients

bm must be identically zero in order that the system of equations re-

main bounded. Equation (45a) alone yields enough relationships from

which to determine the remaining nonzero coefficients am

IV. FLUX DENSITY

A second fundamental quantity used in transport theory to de-

scribe power flow properties is the flux density. With reference to

Figure 2 and the definition of specific intensity, the forward flux

density F+(r;fl) is defined [Isl] as the amount of power that flows

through the area element dA in all directions 0 < 0 < f/2 where 0 is

measured from the unit vector fl normal to the area element, i.e.,

!2T iT/2

F (r;n) = J JI(r;Q),.n dQ2 , = cos 0. (46a)

Flux is in units of watts per meters squared and solid angle dQ =

sin OdOdo. In like fashion, we also define a backward flux density

F-(r;A) in terms of power which flows through dA but in the -n^ di-

rection, i.e.,

14



F-(r;n) - (r, ) .(-n)dS2 (46b)
0 Ir/2

For the slab geometry and plane wave incidence of Figure 1, the
above flux densities depend only on z (or T) and can be written

using Equations (8) and (15) as

F+(T) = F. .C)+FdLT), F-(T) = Fd T) , (47a)

where

27r 1 1

Fr+(T) = i (T;,v)dvdO=Se -T/o 6 (4-Oo)do 6j(-o)jd
ri f ri 00 0 1o o 0

- Se-T/1O (47b)

00

+2T rl N

0 0 0

and

Fd(T) d J j Idi)dudo = -n Bn(T) [ 2n J1Tn(2U+l)d] ,  (47d)

0 -1

where p has been substituted for e.

Evaluations of the above integrals can be shown to yield

e n -, n = 0,2,4,...27~ =2 (827 uTn (2p-1)dp 0o n -1 48
0 n -7, n = 1,3,5,....

21t ij (21j+l)dp n (49)- 1 J  n = 1,3,5....

15



Hence,

1 + I
F (T) = % B(T) +2: Ti Br(T) (50)

n- _~4 n~I
( ) = -n=0, 2, A,... n1=,3,5,...

where the summations terminate at N or N-I, N being either even or
odd and B+(T) is given by Equation (22) with B+-h(T) available from

n n
Equation (34) and B P( T ) from Equation (42b).n

A convenient way to express the above result after interchanging

the order of the summation is to use the quantities defined in

Equation (27d), namely a(x), O(x) and Se (x) along with the odd sum-

mation term

= - (X) (51)

n=1,3,5,. . •

so that Equation (50) becomes

F±Q)= - [a a(x+){$(x) + 2 S (x)}eT/S M
O M - 0 i-T- -T

+ b a(x+){(x) T2 S (X )}e /s ] (52a)
M M o in

P WS0o~ 0 a± +y Xs}e 2S-T/Io,

2 det A(po) o{ o )  0 o

where

= 2s +1, ± 2p Ti.m Mi= ' O o (52b)

V. NUMERiCAL RESULTS

Based on the Chebyshev method, data is obtained for the diffuse

intensities and the power fluxes for both the half-space (To = ) and

slab configurations. Selected numerical results for flux incorporate

a comparison with calculations using first order theory expressions

(see [Isl]).
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As can be seen from E ' cr rest is charac-

terized by the single parameter W called the albedo, which is defined

in Equation (3b). In general, it can vary from zero (no scattering)

to unity (no absorption). We have chosen W to range from a low of

0.25 to a high of 0.95; the former describes a medium which mostly

absorbs energy whereas the latter characterizes a predominantly

scattering environment. A plane wave is assumed to enter the forest

at incidence angles of 0 = 0 , 30 and 60 for the half-space geo-0

metry and at 0 = 00 for the slab geometry. The normalized slab0
thickness T varies from 0.2 to 20. All intensity curves are normal-

ized by setting S /4n equal to unity while all power flux curves are

normalized with S set to unity. These normalizations were chosen to
be compatible with the units of specific intensity which is power per

unit area, per unit solid angle and of power flux which is power per

unit area.
+ (;0 ° anbakrdI

In Figures 4 and 5, the forward Id (T; 00) and backward

(T;1800) diffuse intensities in the 0 = 0 and 1800 directions, re-

spectively, are plotted for the three angles of incidence 80 = 00,
300 and 60 as a function of penetration depth T for albedos W = 0.25,

0.50, 0.75, 0.90 and 0.95. For very small T values the effect of

multiscattering is small. The flow of energy is mainly confined to

the coherent (reduced incident) intensity (not shown). Soon, however,

multiscattering of the energy takes place. Energy transfers into

the diffuse or incoherent state. It quickly builds up to a maximum,

having started from zero, but then decreases with T due to absorption

loss along the longer multiscatter path lengths traversed in going

from T = 0 to an observation point T. Meanwhile, the coherent energy

decreases more rapidly (see e.g. curve 5 in Fig. 15.c) since it loses

energy both due to scattering out of the direction of flow as well as

to absorption losses along the prescribed path. Furthermore, the

maximum forward diffuse intensity is larger and occurs deeper inside

the half-space region for stronger scattering (larger W) media. It

also takes longer for intensity to attenuate and its rate of atten-

uation is smaller when W is larger.

Observe further that the forward diffuse intensity in the

0 = 0° direction i- larger for smaller incidence angles. This can
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be explained by noting that at a given value of T more energy is

available from the coherent intensity Iri to be multiscattered when

e° is smaller. For larger T values, the rate of decrease of I+ o (0 0 )

depends only on the albedo. This follows from the asymptotic solu-

tion (see [CZI) or from the curves in Figure 4 for W = 0.9 and 0.95

which have constant slopes near T = 10 (the asymptotic T range is not

reached for curves with smaller values of W). However, for smaller T

values, incidence angle does influence the rate of attenuation. The

curves in Figure 4 indicate that smaller rates of attenuation are

associated with smaller incidence angles. This also follows from

Equation (43) where the exponential attenuation (exp(-T/pi )) is a dom-

inant decay factor; for po equal to unity, i.e., for normal incidence

(00 = 0°), the attenuation rate in the T direction is smaller than

when 0 is smaller.

Figures 5 depict the T dependence of the normalized (So /4n = 1)

backward diffuse intensity (in decibels) which flows in the 0 = 1800

direction. Again we see that the larger the albedo the stronger the

incoherent intensity which is characteristic of increased scattering

taking place in the forest. Note that the strongest backward diffuse

intensity occurs at the air-forest interface T = 0. This was antic-

ipated because only the region to the right of a particular value of

T contributes to the backward intensity Id at the value T; hence,

since every particle in the entire half-space (T>0) scatters energy,

a portion of which can be assumed to reach the interface, maximum

backscatter intensity occurs there. As in the case of forward scat-

ter, the angle of incidence 0 also affects the amount of energy

which backscatters. We see that for larger 0 less energy travels in0

the 8 = 1800 direction; this is due to the fact that a larger 0 re-0

sults in a smaller coherent intensity reaching the depth T in the

half-space region; hence, a smaller coherent intensity penetrates the

region to the right of T. With less energy available from the coher-

ent energy state and thus for larger 0 less scatter energy flows in

the backward direction.

Figures 6 through 8 are plots of the normalized diffuse inten-

sity (in decibels) versus scatter angle 0 for albedos W = 0.25, 0.50,

0.75, 0.90 and 0.95 and for different penetration depths T. In
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Figure 6, I+ (T;6)/I+(T;90° ) is plotted for the smaller depths (T=0.05,dd+ 0

0.1, 0.2, 0.5 and 1.0) while in Figure 7, Id(T;6)/Id(T;0°) versus

e is plotted for the larger depths (T = 1, 2, 5, 10, 20). In Figure

8, Id(T;e)/Id(T;900 ) versus 6 is plotted for the three representative

values T = 0.1, 1.0 and 10. Also drawn are curves for different in-

cidence angles (e = 0° , 300 and 600).

Consider first Figure 6. It is immediately seen that for small

penetration depths, maximum intensities flow in directions near e =
0 0900. As T increases, the maxima shift toward the 6 = 0 direction.

Furthermore, for larger albedos the relative peak intensity values

diminish and occur at larger 6 values (compare, for example, curve 5

in Figure 6.a to curve 5 in Figure 6.m). Note also in each figure,

and for the larger T values particularly, that the difference in in-

tensity, as measured from one curve to the next at a given value of

6, decreases for larger albedos, i.e., the curves become more com-

pressed (compare the curves of Figure 6.a to the curves of Figure 6.m

to see this effect). Furthermore, at a given observation point T we

see that as eo increases the relative peak intensity rises and shifts

further away from the vertical; for illustration refer to the T=,

80=00 and 60 curves of Figures 6.m and 6.o, respectively. Likewise,
for a given incidence angle e0, as T increases this same shift occurs
as is vividly portrayed in the curves of Figures 7.a through 7.o

where the relative maximum are seen to shift to the =00 direction.

Changing 0 seems to have a minor effect on this shift in maxi-

mum intensity, but an increase in T plays a significant role. Recall

that a major portion of the energy which scatters in a particular di-

rection 6 through the observation point T comes from the more direct

or shorter paths traversed between a scatterer (hitby the incident

radiation) and the observation point. Evidently, for small T and no

matter whether 6 be small or large, maximum intensity flows in di-

rections near the vertical (6 = 900). This results because contri-

butions to the energy flow through the point T near the air-forest

interface in directions 60 are overwhelmed by the numerous energy

contributions coming from the many scatterers in the infinite domain

of the thin slab region between the interface (T = 0) and the obser-

vation point T; the bulk of the energy must travel in directions near
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0 = 900 in order to pass through T. For fixed T and for increasing 0

more energy transfers into the diffuse intensity sooner (i.e., at

smaller depths T). Hence, more energy is now available to be scatter-

ed into the 6 - 00 direction to counteract the energy contribution

which enhances vertical flow. However, the contributions in the nor-

mal direction for small T values are small and the effect of shifting

the intensity away from the vertical direction is not strongly felt

until T becomes larger.

For larger values of T, Figures 7.a through 7.o show that the

angular distribution of intensity evolves into a narrow beam of radi-

ation directed in the 6 = 00 direction. This can be understood by

again considering a point on the T-axis, but this time far from the

air-forest interface. The strongest scattered radiation to reach the

observation point T is now seen to come from the region adjacent to

the T-axis. This occurs because energy originating there suffers the

least loss (due to absorption) as paths leading to the observation

point from this region are smaller than from elsewhere. In Figures 7

it is seen that for the smaller albedo cases, indicative of larger

absorption losses, beam narrowing occurs at shorter penetration

depths when compared to the larger albedo cases. Hence, the forward

diffuse intensity exhibits focusing into the 6 = 00 direction at

large T values regardless of the direction of the incident radiation.

In Figures 8, the relative backward diffuse intensity Id(6;T)/

Id (900;T) versus scatter angle 6 for the half-space problem is seen

to display a maximum intensity flowing in the 6 = 900 direction (ex-
cept for the T = 0.1, 6 = 00 curves of Figures 8.j (W = 0.9) and

0

8.m (W = 0.95) and the T = 0.1, 6 = 300 (W = 0.95) curve of Figure0

8.W and to decrease monotonically to a minimum value in the 6 = 1800

direction. Also, for the small albedo case (W = 0.25) and for in-

cidence angles 60 = 00 and 300 (Figs. 8.a and 8.b, respectively) the

relative backward diffuse intensity is shown to be essentially inde-

pendent of T; this is also true for the T= 0.10 and 1.0, 6 = 600
0

curves of Figure 8.c and for the 60 = 600 curves of Figures 8.f, 8.i,

8.1 and 8.o.

The curves show that as energy progresses through the forest it,

at first, scatters predominantly in the vertical direction and
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eventually proceeds in the forwara normai ai ection, losing energy all

the time. Backscatter at T comes from the entire region to the right

of T. In a small layer to the right of T, energy is the strongest and

provides the most significant backscatter contribution. This contri-

bution flows predominantly in the near vertical direction. As 0 in-

creases from 900 to 1800, the backscatter diffuse intensity falls be-

cause energy contributions in these directions (from successive layers

to the right of the initial layer) are relatively weaker. Hence, in

these directions, the intensity is less than in the vertical direction

as most figures show and the T-dependence is essentially that of the

vertical direction.

For small 60 observe that the relative backward diffuse intensity

at small penetration depths is larger than at large penetration depths.

However, at larger incidence angles 0 the reverse occurs; less rel-0

ative energy flows in the 0 = 1800 direction at smaller T values than

at larger T values. At larger angles 0 more energy is lost from the0

coherent intensity due to absorption and scatter over a small distance

T than occurs at the smaller angles e0 (note that if 2 is the path

length, T = £ cos 0; hence, if T is fixed, 2 is larger when o is

larger). Therefore, less energy is available to be scattered into

the backward direction when e0 is large. For small T, most of the

energy remains still with the coherent intensity and the diffuse in-

tensity strongly scatters near the vertical direction regardless of

0 . Therefore, for small T we expect the same for the back diffuse

intensity. However, for small angles considerable energy enters the

region to the right of T; the smaller T, the more energy enters the

larger region to the right of T and, therefore, contributes more

scatter energy backward. For sufficiently large T, the forward energy

*" flow becomes essentially forward diffuse energy. It is a beam of ra-

diation centered around the T-axis. The strongest backscatter inten-

sity now travels near the T-axis but in the 0 = 1800 as path lengths

are smallest in this direction. For larger 60 this effect is reached

sooner in the forest than when 0 is smaller. Hence, we see a strong-

er relative diffuse intensity at larger T values when e0 is large.

In Figures 9 through 12 intensity curves are drawn for the slab

problem. All curves are very similar to those we have already
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discussed for the half-space problem. Note in Figure 10 that Id goes

to zero as T approaches T as boundary condition, Equation (10b), re-0

quires.

Power flux density is plotted versus T in Figures 13 through 20

(using the Chebyshev method). Curves for the half-space problem are

given in Figure 13; the remaining figures depict results for the slab

problem. Values for albedo range from 0.5 to 0.95. A normalization

of incident power flux So equal to unity is chosen for all flux

curves. In Figures 13-17, normal incidence (0o = 00) is chosen. In

the remaining three flux figures, Figures 18-20, 0 is taken to be

forty-five degrees.

In Figure 13.a, the normalized forward diffuse flux is seen to

quickly reach a maximum and then to decay exponentially with T. The

flux is larger and its rate of decay with T slower when the albedo is

bigger. This is also true for the backward diffuse density curves in

Figure 13.b. Such behavior is characteristic of flux density curves

for the slab problem as well, but a dependence on T enters the prob-

lem. In particular, for small T the flux F+ monotonically increases
d

from zero to a peak value at T (see Figs. 14.a and 15.a for To

0.25 and 1.0, respectively). For larger values of T (see Fig. 16.a

(TO = 5) and Figure 17.a (To = 20)), a maximum is reached and expo-

nential decay then follows. For the slab case, the backward diffuse

flux density Fd monotonically increases from zero at T to a peak

value at the air-forest interface (T = 0). This latter effect is

reasonable since it shows the flux density to be a maximum in the

backward direction when the entire forest reqion is involved.

For the normal incidence case we see in Figures 14.c, 15.c, 16.c,

and 17.c the exponential attenuation of both the coherent flux den-

sities Fri and total forward flux densitities F + F+ for different
riri d

albedos. The former (F ri) curve 5 in all the figures exponentially

attenuates the most rapidly. This occurs because the coherent flux

density always loses energy due to absorption and out-scattering

whereas the incoherent flux density Fd, which also loses energy due

to these effects, gains energy due to in-scattering and hence does

not attenuate as rapidly as F ri Note that the results for the thick
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slab T = 20) drawn in Figure il are very siniilar to the results for

the half-space problem presented in Figure 13; of course, the back-

ward diffuse flux density Fd is zero at T = 0 for the slab problem

whereas it monotonically goes to zero as T - for the half-space

problem.

For forty-five degree incidence angles, it is seen from Figure

18 that for small T the coherent flux density is almost constant

over the slab width. In addition, forward and backward flux densities

are nearly identical for the two different incidence angle cases 6 =

00 and 45 (compare curves of Figure 14 to those of Figure 18).

Hence, for thin slabs the incidence angle does not affect flux den-

sity very much. For larger vales of T (compare Figure 17 to Figure

20) the effect of changing e0 is noticeable, but again, not signifi-
cantly. Observe further that this effect is more pronounced when W

is smaller. This is also true for intensity as can be seen by com-

paring Figure 7.a with 7.e. Recall that a smaller W means less scat-

tering and more abso- ton. Fd and F are then smaller at larger e0
since path length '- larger and attenuation stronger when 0 is

larger.

Flux curves are drawn in Figure 21 from calculations based on

the first order theory [Isl]. In this theory the forward flux is in-

dependent of slab width 'o . Hence, Figures 21.a and 21.b remain valid

for both the half-space and slab problems. However, slab thickness

does affect the calculation of backward flux density. This is evi-

dent by comparing Figure 21.c to 21.d and 21.e. The former shows

Fd curves tor the half-space problem with W = 0.5, 0.75, 0.90, 0.95

and 6 = 00 whereas the latter depicts backward flux curves for two
slabs (To = 1 and 20, respectively) with W = 0.5, 0.9 and 60 = 00.

Figure 21.f depicts the coherent flux density (curve 5) as well as

the total forward flux densities as a function of T, valid for both

the half-space and slab configurations. Evidently, Fri dominates.

The general characteristics of these first order flux curves agree

with the more accurate ones presented previously using the Chebyshev

method and give additional support to the latter theory. Note that

the Chebyshev method yields a more distinctive effect of varying al-

bedo values than does first order theory (as can be seen by comparing

Figure 17 to Figure 21).
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In Tables 1, 2 and 3, all positive eigenvalues of the character-

istic equation are listed. They occur between 0 and 1 except for the

largest one which is larger than unity. For larger W, the largest

eigenvalue is closer to the root of the asymptotic eigenvalue

equation, i.e., tanh (i/Ws) = i/s (see [CZ] or [Oz]). The larger the

value of W, the larger the value of the largest eigenvalue. The

largest eigenvalue approaches infinity when W is equal to unity.

The smallest eigenvalue approaches zero as N approaches infinity.

VI. CONCLUSIONS

Diffuse intensity curves in the forward and backward directions

were presented for various values of albedo (from a low of 0.25 to a

high of 0.95). A plane wave was assumed to enter the forest at inci-

dence angles of e 0= 00, 300 and 600 for the half-space configuration

and 60 = 0 for the slab geometry. The normalized slab thickness To
varied from 0.2 to 20. All intensity curves were normalized by set-

ting - /47T equal to unity.

Forward and backward diffuse intensities decayed slower when the

albedo was larger and incidence angle smaller. The strongest diffuse

intensity in the forward direction occurred near T equal to unity

while in backward direction the strongest intensity occurred at the

air-forest interface T = 0. The maximum forward diffuse intensities

flowed in directions near 6 = 900 for small T. As T and 6 increased0

the maximum forward diffuse intensities shifted away from the verti-

cal. The T dependence was much more significant than the 6 depen-

dence. We found that for small T, incidence angle 8 did not affect

the maximum forward diffuse intensity. At larger values of T we

found that the angular distribution of intensity evolved into a nar-

row beam of radiation directed in the 6 = 00 direction. For smaller

albedos, beam narrowing occurred at shorter penetration depths when

compared to larger values of W.

With regard to the backward diffuse intensity, a maximum

occurred in the 6 = 900 direction and decreased to a minimum value

in the 6 = 1800 direction. For small T and small 60 the relative

backward diffuse intensity was seen to be essentially independent of
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T. For small e the relative backward diffuse intensity at small T
was stronger than at large T. However, at large 0o, the reverse

occurred.

Power flux density curves in the forward and backward directions

were presented for various values of albedo (from a low of 0.5 to a

high of 0.95) and for two angles of incidence (60 = 00 and 450).

Characteristic of such curves was that for sufficiently wide slabs

(T >1) the forward flux density Fd quickly reached a maximum value0d
at T=l) and thereafter exponentially decayed as T became larger.

Larger albedos (stronger scattering) were seen to yield slower atten-

uation rates for F+. The backward flux density was observed to reach

its maximum at T = 0 as expected. Dependence of flux on incidence
angles was also examined. Its effect was shown to be pronounced for

smaller albedos.

VII. REFERENCES

ASt Abramowitz, M. and Stegun, I.A. (eds.) "Handbook of Mathemati-

cal Functions," Dover Publications, Inc., NY, 1965.

CZw Case, K. and Zweifel, P., "Linear Transport Theory," Addison-

Wesley, 1969.

CH Chandrasekhar, S., "Radiative Transfer," Dover Publications,

1960.

Isl Ishimaru, A., "Wave Propagation and Scattering in Random Media,"

Vol. 1 (Single Scattering and Transport Theory), Academic Press,

1978

Oz Ozisik, M.N., "Radiative Transfer and Interactions with Con-

duction and Convection," John Wiley and Sons, 1973.

VE Violette, E.J., Espeland, R.H., Schwering, F.K., Whitman, G.M.,

"Millimeter Wave Propagation in Vegetation," The Ninth DARPA

Tri-Service Millimeter-Wave Conference, Huntsville, AL,

20-22 Oct 1981.

SJ Schwering, F.K., Johnson, R.A., Rokkos, N., Whitman, G.M.,

"Effects of Vegetation and Battlefield Obscurants on Point-to-

Point Transmission in the Lower Millimeter Wave Region (30-60

GHz)," US Army Science Conference, West Point, NY, 15-18 Jun

1982.

25



ASc Ziering, S. and Schiff, D., "Yvon's Method for Slabs," Nuclear

Science and Engineering, Vol. 3, pp. 635-647.

Sny Snyder, M.A., "Chebyshev Methods in Numerical Approximation."

BFR Burden, L.R., Faires, J.D., Reynolds, C.A., "Numerical Analy-

sis," Prindle, Wieber and Schmidt, Boston, 1981.

VIII. ACKNOWLEDGEMENT

This study was conducted jointly by the Center for Communi-

cation Systems of the US Army Communications-Electronics Command and

the New Jersey Institute of Technology.

During the summers of 1980 and 1981 Professor Whitman worked under

the Laboratory Research Cooperative Program with Dr. F. Schwering of

the Command's Millimeter Wave and Secure Fiber Team. Mr. Li-Wen Chen

received his MSEE degree from NJIT in October 1982 based on this re-

search and is currently a professor at Koashung College, Taiwan.

The authors wish to express their gratitude to Dr. J. Robert

Christian, Leader of the Millimeter Wave Team and Dr. Larry Dworkin,

Chief of the Multichannel Transmission Division, for their encourage-

ment and support.

26



FREE SPACE O, O's FREE SPACE

51. z
0

s01~0

INCIDENT
PLANE
WAVE

Z=O z d

Figure 1.
SLAB MODEL OF A FOREST ILLUMINATED BY A PLANE WAVE.

Alt:fn)

0 n

IdI

dA.

Figure 2. A

SPECIFIC INTENSITY I~l;,2) FLOWING THROUGH AREA ELEMENT dA.

27



Iri

Id

.no

10

no

Z a0 z~d

Figure 3.
TYPES OF INTENSITIES- REDUCED INCIDENT, Iri;
DIFFUSE, Id; FORWARD DIFFUSE, Id; BACKWARD
DIFFUSE, Ii.

28



0
CD II

I -S.

S: I °-
S ' I OS I.

I S a

I* I : ,
1 ,CD C.)

I ,
0000Q: /
N H M II II t : I -

": :Z : :Z :Z: I .
I .:, :

"CO U)II :i~ a • C)
" II : -

Ii . N h

N I If

6 m I l If

CD4

2CD

Ij~i .
ICD .1.

5' II : CD

-5-ai :, m
* : D

CD :e 0 0 C U.

Iq m

29



CD

0 w
U

* -o

0; a; 0;C;

s Iy a 0

CD M 0.4
U;C 4c.U 0) i

* ID

0 0 t 1

: AJ

C1 C

aaaa CD C Im D I

D a; a;M:

Ir-

,0_



0oo
0m II

C: 06

0 0 0 C

I % w w

CD CDCDC

C3 C3 C30
CD 0 0.In-/ / -;C

NM .) N I

CD

L&J

CIUD ,

IA0. a L& 0 -L

I:;g 0 Z

: , I-z :

oo I I,.
* I'I .,

• 1a 3 _113 1 ' •

I :II I

S 41

31



0

W 0o

CD Q

SS

eo *

0 00

* lca 0; C; c A

a1 01 a
T w

CD I-i V) N NhI

0 0 6 0 0 0 u.
1C

0C

In~t QSr : L

CDc

8 e; JIDC; G; 8 8
cti q M v 0 w

Ham
32 *



0
0 0L

CD O

00 00 DII

00

CD 0D C D C
/ C00000y 3 C T f-

w I in N e

U. * I--

ISj M qr 0
CD * 1

cc
CD C.

0 s-:1:I-W j -oc o

~: I : 33



0CD

L)

.0
0 0

oooo CD C o"C
,4D kb 1_ 0 OM

O~w

"b 0 cs :b a IO,

i U I IJ iI S

U; c; In", C0 b1, 4W"

1 04

0 0 0, ., N

II N II f Ii I It0000. t;I /> /

!; :
, 1 .., 0

0 Jlp / :Da .M4

a. a

OJ P7

34



0 CN

CD a

% % 0 C

0 % CD

9 0* 0

1.0U.

9 0
0 06 Lii60fOO D

A U)

:z 0; c;0-c

CD~~S W (0DCD9

jj M I

. I.

CDl l D 7 C In CD if" DC
CD N W)N C % i" 'i

0 0 wL
CLI.

LNX4 Q"L "- - J - W 0 gz" 0

r4

35



N

7 .. .... .. 11:

IL.oI \ -'. ... , ,

% "%. U)

* a . ., *
0 U

CD x

a; 0
N N N LLJ

CS OF 0*C

DI - U

S * *; 0

:* I\ .... , H .

C,) (M) l) CD rC. x' a1D-

.

I I SI

* a L.1 1 0

u nun,* .3
*k

aDN W N C I .W)CwC
9 9 * 3,

- l .3O -r'

-C~.3r)~~*tf / 14

36a



C. .a.
o; z

s e " %U

% C

eb ., I|

0 :CD

CIO a
SI- u

N; C ; .." ,,, ,)a v I I C.

M ".

.3 .

-3?

aaDa 0-

__ ~ 3,a;

___________________LA._____
*D .N In Cj C ) N C I

LL. 0 LL L 0WC. L.ZQ Q6. LL

37.



0 to

gle* %W

Ce %

09 0
.9 fl 0

I to0

% C

0 00

C; * a; 0 a*

a 8 00

60 w 0 UI

I CD

a U.

Ao CD

CD N * N D N h" m CD

- -4
* C -

381



f 0 %

%e U)

4b CD A*Ij

Is CD

CD CD CDCD

OD z

a au

I O

I CA

/ C;

i.

; I Ii cc

W= QUw 0=0 W= U) bw0
0 N I~ N 0 N 4

39



0
*) 0

I C.

0 0 0 U
.D CDC DC 0

ca LamC
94Di

F- I~ 9*

%0

#40''
LL

UN.-ON 1 w1

CD (3 CDC* CD * "

* / Li

1*= /* : .

40U.



0 -

C.CD

I CD.. %

04 %

0

, . CD

0 0 0 00 1CC<C
S. . ' 'a -

C5 Ql a a

0 I

I , :I / -J

• I :--

I-" I- l" I-- I---- .

, UJ I L)

I '. c ' /,n.

C1 -4 V C

I ' /" 1 :

C- I• --

CD-

*~ 1D

I .CW0 LA.

U 0 I 0 IA C CD U.
N I) N 0 I If) N CD

-- .-, -4 - 0D 0D 0D 0D

CD

,4

41



CDn

CD LLU

0; w c,'

0;0
0L

000 00 V V)

SJ

* a

do,
lo 0

CD * Q

'IZ

420



Ix
LA.

CD CD C. D

%D. 04D 0 0

CD 0 DDC

CD I--
I SJ

9; 43 COD CDO COD

C000 CM 7 CD

It it 0

0000 M leW

* * * * * ~ 1D
I * 0w

*ix

-b to ) I *

CDQ Q Il CD I") C l D(

SI 4,
* I 0

* ~ h * 43



CD
0 0!

_ ii

0 0..

9,,I

\ I 0'I

L..00 0 fA \ w

: 0 0 I "

:..

: . ' I o/-' ,Z

o0 0 0 0 0 1

If It It it 0

IL

It It It If It.

/;. - - - *. 1 0•w
44 LA.

0 I-

0 l Ch. Ui) CD 0 M'. I '
D N. U" Oki 0 O0 0 w.

I

44



% to

* ft

Its.)

I. SI

V) w

*~~o w

IO D 0 C ' 1) C 0 z
W co N h) Itj CD -

'I I-

If)0000

W=Q ~ ~ ~ ~ ~ ~ ~ .Q~w =-C.- W C 94A. "A-r L
* * . em 1

* '45



0 
e.

I.. we lC

00000. 

c

'II9L

S9J 

(AS 
U

w e e .D 
'I 

mg

0 W W 0 0 

CIU

*w ew e ka %1w
N 

\jv/

C D 
C l 

V C

N a w 
A9

N q 0 xLIA

a 
w

* / IC D
W) C in D in CD 0 CD C

3D V) IY CIN j C

46L



9mI
S.... D

e~.**~Gb CD
0% L

Ic
, . CL

% 10 (A~
IC

c; 0;1;C

CD '*DCDC

00000

t- S I CD U

II

.3A

CD W)N :M C l D-

U.* .L X1- L. I - W X .
:. ~ r9

* :3

47f



0

% C0
% II

0W
a *, J

CDw

CD () 0C ('.1

It-

0I D M0 0 LI.

*~~ 6 6 S a6

In00 0

1r))

0
-C * U*.U

U,00CD
0-c'j~n I 9 4D

*Q

CD r- U) C 0 LUIn c

* w

a ' A .W I- L-a I.& - I

I I .* -~ 48



u-,

0a

% 0 0(

0 0

42 1 W A

0 C* a 00
.. D

0 LA

LZ

00 0 :1 0
1INi Vo$ -4 C 0 CD I

LA U. U-Wix a aW

0000" :1 :' z
* * * 44

49j



U')

00
CDI

/ CJ

I 'I
I / D

CY az C a Cb * S ~

CD CD 0 ~
I :*

U,0 go

%\ w

II uII CD I"I Il * r \ uI-U <
rI ** kNk *z r%.C,,N m

IU

- c~Jr)'~z-c) -4
I .. ' '

50.



o O

T 
If

0 =-

.. w.

, , :.

V) U

0 *

41 U;

N0 V) 'T 0

* U 0 r8 .) .1 , 0.. l- .l ..

0 L,

I tI-

U- em LAI * IS C

I *00

II-
-r

~ (%J fE)~ . j) 51



IM 0 CD .

110 a

0 0D0 G)C D ()lp P00 *

*; l* C3 a; C* * 0

CD m CD m

00

w

.l~oLL.

r In 0iF-

L*= LL.I.A

i: I 52



Ia.

Q II "D

.. , " . \ \I, -
: IM • C

0 0 0 b a

o C;C*C W'* /CD

: - \0

V V I o

i -CD

04
I-

Sac N .a Q U.

-rI .*4

53w



0'

/ * w

0 o-

'I 0 -o

II

'000

0D0C00W0 im W

i.-

II it if It It I IM

I 0

I- U-) C

0 LL

LA LA l' x _DCI r~ g

* * Ca

540



uV)

# I I

0 0

G;i

C-3 im Im Ci

0~~~ *ia a

00 0 CDC 0 I *b/

. w

a, II ..A all..

IN 0 -0N

W a a a Q

-4 ClIt) 0 1 55



o 10

IN

It. If' 11-

w
SMN t

ap~~ CD //

~c

- "i-

IA N. W) IN-

Q% La .X0M LU Q0-L.U

\'44

560

* Li.. mm



U,)

0

eL.

a. a, 0

In CD a) 0 L

0a C 6 O za -

i i t HI I I * j

04 PLD
w. *. ~ .. *

CD w

. w1:1 II

W = Q a\.U = O X " ____aW U

i:I57



0

I 00.

/ *

CD 0

0z a 0a

it0 r It * , It
'.0~~C (0.0 D'.

0Z

w 0

L1I II) a It) II 07

CI rr) UUJ~ 0 r ' 1'j

-r

If)58



LL

0 0

U iI

IN*

om 1'.. UlI 41

LL U. LA

o o o oo I 59



0

o 0

* II

M) m

z :1 0 I

:1 0 CDG)I

I U.

:1>
,:1 La'... ..

0 0 0 0 0 II: 0

0 M 0 II\

II, \ . , ,.-

I~~C wDi •i

CDU

U") ~ ~ 5- :n o l

60



0 0

CD II ("

0

V U)

:1s A- = 0 a
rf U" V I ) N a

61



0

:1 00O0C
CD CD C

43;1

I :. LL
0

CD
Ul) Ajlul) C

a1 6-*6

62a



ot

all,
.1 w

0 00

it it 11 I -

0 0-

0 0 0 . 0 1
a). 0 D10

00000
11 it smo

1-0

U- 1= Ul Ul Ul I-m
N at~0 U' )j t

* ..- ~4 4
W=O -WLL-=I- MOV-P4U-=Qa-0

II II It I II I I63



00

4 LL.

co w
om Im z (D f

0 I 0

0 0 0i i) :a. C

AJ r6 l -r 6 1O

00000 -

00

r-:

644



U1-)

w

0CA

U.

CbO00 0D

0 CD 0 w

CD I-- a

03CI"00 * 0 C.
CD = CD

CC

0
0 U

LL

00

aIa 0 w

M M a LL U

-J

o65



0~ 0 o

w.

0 CD dw
re) V) G;-F

0 cz CD-

0~ 00

0 -

0.1 V)

000 a

"-4 0 0 0 Cl
INc

0

M~a a WW - I-- - W "-

A Ca



Li

aa.

w.

0 Q

CD 0)

LA-

00 0 al NA 0

000a . 0 w
0100 0

U U S 67



CD

0C

L

0w

wLL

0
(S) LL

CD I.6 -
00 -

IILI =1gg'

a, F* U-) IN a) F- U- L
* iw

44/
68.



0 U)

0 00 L

a;.
t0

t.
9 0 0 0 C -

4* -- le

CD : 0*

"..Li..

00 0

7.w-4

Ii II II

0007h t LO 0 u ()0

r-~~~~1 LO k~ a i' I
0 0 0 I.* W J

-0a 0"L- - L A,( LU Z

SB * o~ 69



0L

0C
0C

0 0j

L.

* 'LI

700



SIN

I. w

0 V

cu -4

,M) IM IM

ILA

I:a 0 I -:

0
0

1=IC U- -)c
I. - w

I. CL U-~ Z- -- Q

.4

10



o

sm IV)

ix

0 C -)

(4 
U

0 u

10 : CDXV

f: OD I--j\

I.C

N. IN I-F- '

0 0 0 Q": a"W ..

72Z



Lr
0
oD 0

-7

0C

L)L

5. 0

~~LJ

C

00DIm0 l'0ojk 0 wm a -

0 a~

IS) im

* 0 6 -4
V.~I U. U.* w -

6-

* 0
CD wD

a) F Li) 1'\i a) - Il i* C -i

q4j W4

* 0

* 0 Li.

* L54

* S73



L

0 00 wCD 0 CD
0 CD c

CD( 5

CD, C C; W

w

CD r% 0 CO

- w

CJ a A A -QOLL.a

74



0

0
o

CDA

0 0 0

V.V0

00 C 0 w*

I w L
CD x a

CD M w

If 11

000 -~CI

000 I-
0 ~-

0 % - N C In
I.w

mmo 0- u -=-WX - U .Q

75



00

0 <

* w
CS 0 T1

C3 a 0I

C; w u

00

(S 
S U

0 0

CDD6 D in 0Du) C - D ll Da

NI In CM CDS l) N

0000
.1 0 'X I

76I- '



0

a)
r. w

I. UI

-. 1

CD l 0 L&

Coll wc

ww

54)

* S U 
* 77



0

o 0

CD 0

m m rl) i

000 C l
03t*

a; **

IC:
r~) %) ~u) W

It II It to

IIl

I. 0J0O

MI = 0.LU -4=1,

I44

78



0 q

CD0

a II

oL

CD 0
*m C0C

*b 0

CD ~01

000

II C;.
S Oki

SII--

000

00 Ix Cml)U

799



CD.
N

4m

CA,

w

CD CD G

Ct IlD II a
00 a:1

c~<C

in0 -

ti;lt is 0 -r

w

IfL

A La.

*C,
I: 0
I * *.a
1 * .' '

: **.

:C
lm C CD as (D C a) m C

800



p, 0

0

* I II
0 0 0 Q

CD CD0C
CD CD D

dD
mU

It 11 1

(3) 0DC

:1 0

coc *W

6 0 :1a t LI D (

1



0 0

1p4

It

.9 C0
a C2$ 0

C; i;

02

Lz.
0 10

0 
0:1 w

000

0 II

*1 (Ic mFJ

ww~Jr LL-W

82a



qj 0)

Iw.

02

I 0)
CD CD

0 co

0 0; 0

000 weW

I

I -

& 0 a 6
CDfl Ill Ow ll C D u) %

LL CI C) I0 L A t-w C

000 :83



0

II

II I I 0

0

: I

* a
I i1I

II

I D)

ix

* .. a 1

I I I 1II-

84
0 0

: -

h; C)

LA N w

* L-

* CCD
CD~~~~ CLCat. ) to s 3

km CD coaM

LLWQ WI. 1,- UjWo4I->

84o



clJ

0

I"

0

000 W6 IN

Ii Im

CDC'

*6 -4

fw

.10.1

.1* U4-

CO Z4&Z L LL

* 2 85



U,

0 0o

0 0 0
0 C) C0,

a C3 a

rC-)

*1I
Nil I .1* (i

0i

CD~c CD Aa) Q I.
;I ~ CD

C%4j

~ ~44

86-



0)0

0D 0a

14D4

It if If

.1.

0L

0,

at CD*tJ

:1W

0H
*1t

W a Co

000 ~87



c'.

cl

00

- 0 4
. W, • II

" I (w

if Itr

CA

.1n

00 -4)

:1 0

:1 I L

II I II• u I..

" :' I --

I.:,I S U..I

Cain

t 8

I 0

* I I,. I

I: 0

II,:II

• -7

Ii88



0

II

0

o' / II

I ,w
* I cc

tI .

Aj M
U-

II I II I I

IIN

u I II•I l--

* 0J
I,-I rIl rI * -

. .* I ) C,.
I

0b, I "" z

* • I .. I,-

I I II I I I

89



CJ

0
II

0

% CA

0
%, I

% L0-

aw

'4 .1
0-

C6 C6 C

V) w
C-J

3 01 0u

0i I- -=

till I
000

0 CD l

0 0-

I * w
0

~14

900



CDC

00

00

ifi

0

I:

.01

I IT

00I

Q-W N. I CL U-a 4

I 91



0
I,-,

0

W.

0D

0
(M CDIC

0 IC 0 L
a)00(

-CD I--

I-

-

0~ -mC Ma

INI

W~~~n a&4wLJW16 . L-

92i



0

o0

.9 %

9,D

ow 0

* 1 '0LL

* 0

000 * 00

* S W LA0 W0 M*~ Q w

93I



Ln

0
II

00

0 l
oF

* a

0 0

it~ It

C3 a a.

W. 0

-

I I I

w. a..

0 S~ w Tr I

LL=O~~ 06OA -=-MWXv/-Q a L . " I-
04

till It___ 94



0

00

tD 0

Q 0 DIDQ 0I

000M*000

(\ lu CDI 
0 X

* Im

I D 0

IM~ IMI 7

- r-4

- -54

950



0

U.

0w

* 6

em ImII

1:7 3 0 G

('% Is'La

w

...

0 0 0 0 *

*1.
I0M Vm 0 IX)

0 00 IN0 1

WI *. g a I4

"liiw I o

lieu 
** 96



0 0

0

IMI

00
CD LL

0

00 I w

Incl I O
.,:I wjvC

M I - -L W L xC -L.. -=-Q

3=~9- LZ

9.- *w97



0 0

U II

EL

I--I

100

00 0 w

CI

CD II a D
0 1 4, W

CO :9 4Z a LL Lcm)A

em 
I O~98



00

SII

% 0.
CD aD

W co
0

0W

S IL)

o

1.0

CDD v
0w

L I-- 41L- L

-- I - L 49

uW (.3

00 I 0 Z Ci



It

% L M

o

CD ID

to 0

w u

CD> - N "r I --

a) 9D - f

0

• - . ,.)
CD LA.

A .

l=) CDl ...C/D mlC
tn CD h

'. 0 w

r-4

100



' o o

' .. -

000 0 <m
al 16 -

II ( NJ IID I - - i

Cl0 'Z "M

.a IN Irv0

0001



I=In

a' %

CD -7

0I--

* -4

0

0

IPIJ-

102



0

%o

0 0-

,,': II-

'N )

/,U-103

,' "
' " '. ' 0 7l ,T

'..o9 ) \ I:.)

~,.-

103



0*

0

ow

W6I

w: U
CD CD M CD m

IN h- c "4

~~: D

IMo IMI S) i

i-1'

W XI Q -L.Q

104



o

Si

c..

'.. CD im

0* \

'.. Q
CD

L.

0 w

am ON a

e-. L.4-(

Ij U. -. Q

105a



00

0 I0)

0

00

X 0 0C

0

00
i~~a 0 L 0r'-

(~~J r.1

IN IM0- Ii' vi
(IJ MI LM :2 II CI -4L. 0_t

51060



V-.

00

0~~ imCDC

o -

ow

0 V0

0 L0

0 Im I' IM in ZXi

(~JC'C~J~J\J 0

MZKQ Q-L.t)

~D

107:



oc

If ItIL

0 0

w o)

CD -4 0

00-

1*.1

0-

em 17 U SI

108



0-0

0..

(.. a.

0 C0

I--I

pro",~0 15w w1

LL

^2' II;

4-

r 'P4

109Li.



00

C01:

13o 0

LX

06-

W) ID

64

L.

£ 00 w

0i IfM IMIM17

1:0 -j(

a U)

110



0
* I,

(S) 0

CDa

rj)

I.LID

1XI 42

o P4



0-

0~w
a) CD D CD i
(S) 0 C

V L0
0. IM CL x 1

00 F

LL-

4=1~

II II II I.LL)

LL LA uj wy . a L -Q

000 0 C44

112i

I: t -mmm



0 CD-L

Lri- a

(I

CD. C;

CD,

LI.

CO Q Q U L.W*X a Al 0A L

1133



00

il;

CD

It It It Il

CD C

cr)

CD L

I
* 8: a;:

WI Q U- -=I It)~l' MI a a-L.A -= -

114I



; IN

I it I

I • '.

aI a

I 4Z

" l -

0o0 o 

(% I IIl II /W"

* * * , , ...

if i f U* *I -.

I:,.

C U-

i i L

I:I I .z

UCD

CO.

CD mo

L ad a a W "

U, S

I].1



CD w

I (NJ

Cb 0 03 0

C CI

* w

CU V) V I-

. D I7.1) )C
CD, MCD co

I * I 4

'I:= a- u S-J X -1 .2L

116



ula

CO 0 S

1.0.

00 Q0

'p.'.

0 0 0

a LL.

0 ~ ~0

d U- -. C

- U. U117



IAlJ

00

00

aI 0 a0C
16I

N ll al

1

U-

csa

0 C~ in (

4 U)

11



U-,

CD *0

?l' -

I:,, C; U;C

\. V) Tr U-

0~~ 0 0

Co k.J ... :,
0 4 I W- I~D

kIs 15) CID II II/ 100 0 0 *

w : L-1 DI6C

1 ' I 119



to-L

11 ~ ~ If 11 1

,.. Ck-

0 .

0.2



OD

00

~.4<1
-.

Im0 Is I

e.4I

(\j V)0

C~ L

t::. S

M00 0 tZC C#U IL J A

I:121



CD ~ ~ ~ , IMID D

a: ,2 /3 0
w

0 L

I m

p12



4 13

u ; w
IM 0 MI

* IM

IILID

OL U

e ~A

I!;

CD I: I

N C~j kD-Q

123L



00

eo"D It

00

Ix

a 0 0

CDI 0

.:IIC)~

D I

I

_1

I! U.

: ' *:. s

:.0 I I:' v<

I ,: , '1

I- - O-s- Q,

- -

124

aI In It U-'-CaC

1124



0 W.

ow~~t I0I'C -

0~~ Im IS!aa)
a 0,

": COD* 1
I: fI

* 0*

,: I a-

S. .

0. I4

15' n ""
.: i

Ill
1 IL-J

1 : IL

i.I120



;0 a .Ia a I II)
I : , ..

I " w , .

I :*
* I ,.

I : * :

JJ I 
S

I 0;

! I I.-

I V V

b' x 0 0", I ." I-

: / Li..

,,. ,, , I-

: g C* D

C* LA-. I *

U., CD)

,--4

1.20

I *L!.

' *:' -

I. 2



- AJ I

* " * *fjJ

a :I 3
I : I # '

0 .I --

*0)

O C;LU

U I.N M I

" . II--
,t it I : ,

I:/ '

! i

,: / 0

I:/ .

(.J N) V4 " '
, .'..

. I . 4 ,I) ,

a.L

"* * ': "" : IM IM

LA- - LL i 00 .1(

12



I IfI It*
* ( 0D

I / wD

CD M CDCDC
* 0c

It i-
CD CD O CD C

0: C3 /

11 If 11

CD :( a CDV A
I: 8' *' ~w

CD V) kA-rorL

in t~128



1i)

UQ

CD CDOS
CD ()I 0.

a a 0 c

* 11

C; Im o -

IV- ow Q)-

0- 04l) .

wi it Cl WCX zc

129



03

- 0-
11 It

I CS

I-
I L-.

LI

013



I

0 M

:1 .-

Q I IM
•S

Sw
- w* w) " I 1.1

Il sill r-1

0-4-• I

Coa

II II II *

.* I -.

* I
* I x

: I C::

• I (\I.-,

*131

* .. -
: : <H

LL'.= - "Q

I ., " I,131o



--

to 0

L-

CD Q

0 C~0

I.H

1 132



CD
IC

M w

U-) aI
C CI

I C.

13



--

CO

CD IM

IWLi
41IL

%M ID zI

Smj 1 01
Ifl~) a LiW

U -

LI m

01 -

M:%C1 I "L -M -= O

13



C0
0

CD Im
ImI

- I4

a a~

a X

00 t -

Z I.-

liCal

I -L

L0 LX n. iZ64IL . L--

135



I. I

( C

- :3al

II II II IILL
,

I I 7 1 L-.

I0 X

136



00

CD 44

LL.

I CL

I.,

0137



It

OI a.*) l

f

I ..

-

INI

0

IN CAL:-

I ii

eL: M

IV

..D 7..- .-

i " "U

44 I I 0"

U- L4L- c

""138

I I U-

'lIl -"

II

0'-4
I I°

: i i I I 1

138



CD

C,.

CC3

CD 0

Cj

1 -

(1)

ID a

IILI

a) C4

CO~~~~~~2 Z"4 A.L- L--

139



0c

1.1

/ 0J
C M;

.3; u; cs

k!D T

U/ Ce'- j ZA

140I



TABLE 1.

EIGENVALUES FOR W 0.50, N = 15

Eigenvalues Asymptotic
Eigenvalue

N=15,W=0.5 0.0024127201

" 0.0216888460

" o 0.0597271820

,, 0.1153119000

0.1863812500 _

0.2703143700

0.3637836200

"I " 0.4631488700

0.5644062200

0.6634577500

0.7563703600

" " 0.839i169500

" so 0.9085847400

I 4 0.9608198500

" " 0.9934517000

" 1.0443892000 1.0443819000
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TABLE 2.

EIGENVALUES FOR W = 0.75, N = 15

Eigenvalues Asymptotic
Eigenvalue

N=15,W=0.75 0.0024151615

0.0217681920

"___ 0. 0600775240
0.1162469600

____ _ 0.1882330600

ig 0.2734405900

", "t 0.3684320600

0.4694660100 I
0.5723481100!

0.6727326500

" " 0.7664521500

-" 0. 8490449300

,, -0.9171296600

0.9663557400

• - ,,0.9949324100

1.2894637000 1.2894634000
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TABLE 3.

EIGENVALUES FOR W = 0.95, N = 15

Eigenvalues Asymptotic
Eigenvalue

N=15,W=0.95 0.0024176029

" " 0.0218328890

o f 0.0603619480

to "0.1170050200

t 0 0.1897284200

" of 0.2759308300

of of 0.3720490100

0.4741962400

o I 0.5779633500_

i o 0.6787787900

" 00 0.7723188500

0.8540156400

,, to 0.9206208700

0f s0 0.9681477400

o to 0.9953059400

to 00 2.6351487000 2.6351488000
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